(2)

22/135

B.A. /B.Sc. (Part-III) Examination, 2022

MATHEMATICS

Fourth (B) Paper

(Linear Programming)

Time: Three Hours 1 Maximum Marks: 75

Note: Attempt all sections as per instructions.

Section - A

(Very Short Answer Type Questions)

Note: Attempt all parts of this question. Give answer of each part in about 50 words.

1½×10=15

- (i) Define the Slack and Surplus variable. 1.
 - Discuss Big-M method.
 - (iii) Explain Primal and Dual problems.
 - (iv) Describe any method of solving an assignment problem.
 - (v) What is the difference between T.P. and A.P.?

https://www.vbspustudy.com

P.T.O.

- (vi) Define Basic solution and feasible solution.
- (vii) Obtain the dual of min z = 60x, +40xs.t.c.

$$4x_1 + x_2 \ge 12$$
 $9x_1 + x_2 \ge 120$
 $7x_1 + 3x_2 \ge 18$
and $x_1, x_2 \ge 0$

- (viii) What is difference between Simplex and Dual Simplex Method?
- (ix) Define integral programming.
- What do you mean by matrix forms of linear programming?

Section - B

(Short Answer Type Questions)

Note: Attempt all questions. Give answer of each question in about 200 words.

 $8 \times 5 = 40$

2. Solve the following L.P.P. by graphical method

max
$$z = 2x_1+3x_2$$

subject to
 $x_1+x_2 \le 400$
 $2x_1+x_2 \ge 600$
and $x_1, x_2 \ge 0$

A firm can produce three type of cloth say A, B and C. Three kinds of wool are required for it say red, green and blue wool. One Unit length of type A cloth needs 2 meters of red and 3 meters blue, one unit length of type B cloth needs 3 meters of red, 2 meters green and 2 meters blue and one unit length type C cloth needs 5 meters green and 4 meters blue. The firm has only a stock 8 meters red, 10 meters green and 15 meters blue. It is assumed that the income obtained from the one unit length of type A is Rs. 3, of type B cloth is Rs. 5 and of type c cloth is Rs. 4. Formulate the problem as L.P.P.

https://www.vbspustudy.com

P.T.O.

Find all basic solution for the system of equation

$$2x_1 + 3x_2 + 4x_3 = 5$$

 $3x_1 + 4x_2 + 5x_3 = 6$
OR

Solve the L.P. problem by Simplex method.

maximize
$$z = 3x_1 + 5x_2 + 4x_3$$

subject to $2x_1 + 3x_2 \le 8$
 $2x_1 + 5x_3 \le 10$
 $3x_1 + 2x_2 + 4x_3 \le 15$
and $x_1, x_2, x_3 \ge 0$

Prove that the dual of the dual is primal.

OR

Solve the following minimal assignment problem.

Man Job	1 .	2	. 3	4
I	12	30	21	15
II	18	33	9	31
III	44	25	24	21
. IA	23	30	28	14

 Find an Initial basic feasible solution of the transportation problem.

Warehouse							
Factory	W,	W ₂	W ₃	W ₄ .	Supply		
F ₁	1	2	1	4	30		
F ₂	3	3	2	1	50		
F ₃	4	2	5	9	20		
Demand	20	40	30	10			

OR

Use Branch and Bound technique to solve the following problem :

Max
$$Z = 7x_1 + 9x_2$$

s.t.c.

$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

and $0 \le x_1, x_2 \le 7$

and x_1 , x_2 are integer.

Solve the following L.P.Problem by Dual Simplex method

Min
$$Z = 3x_1 + x_2$$

subject to

$$x_1 + x_2 \ge 1$$
$$2x_1 + 3x_2 \ge 2$$

and $X_1, X_2 \ge 0$.

Define Transportation problem. Give the mathematical formulation of transportation problem.

Section - C

(Long Answer Type Questions)

Note: Attempt any **two** questions. Give answer of each question in about 500 words.

Solve the following L.P. Problem by Simplex method with Big-M technique

Max
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to

$$X_1 + 2X_2 + 3X_3 = 15$$

$$2x_1 + x_2 + 5x_3 = 20$$

$$x_1 + 2x_2 + x_3 + x_4 = 16$$

and
$$x_1, x_2, x_3, x_4 \ge 0$$

Use duality to solve the following L.P. 8. problem

> $Min Z = 3x_1 + x_2$ subject to

$$2x_1+3x_2 \ge 2$$

 $x_1+x_2 \ge 1$
and $x_1, x_2 \ge 0$

If x is any feasible solution to the primal problem and y is any feasible solution to the dual problem than prove that

$$Z_x \leq Z_y$$

10. Use Vogel's Approximation Method to obtain an initial basic feasible solution of the following transportation problem.

Dealer		Α	В	С	D	Available
Factory			,			
•	I	11.	1,3	17	14	250
	II	16	18	14	10	300
	III	21	24	13	10	400
Dema	and	200	275	225	250	

11. Solve the following L.P. Problem by Revised Simplex method

> Maximize $Z = 6x_1 + 2x_2 + 4x_3 - 2x_4 + x_5$ subject to

$$2x_1 + 3x_2 + 3x_3 + x_4 = 10$$

$$x_1 + 2x_2 + x_3 + x_5 = 8$$
and $x_1, x_2, x_3, x_4, x_5 \ge 0$

P.T.O.

22/135