15/122-BC

B. C. A. (Second Semester) (Regular/Back) Examination, 2015

Paper - Fourth **BCA-204-Discrete Mathematics**

Time: Three Hours] [Maximum Marks : 75

Note: Attempt questions from all Sections as per instructions.

SECTION - A (Very Short Answer Type Questions)

Note: Attempt all parts of this question. Give answer of each part in about 50 words. $1\frac{1}{2} \times 10 = 15$

- Define Cartesian product of two sets with an example.
 - Define group with the help of an example. (ii)
 - State the relation and types of relation.
 - Define logical conjunction and disjunction.
 - Define a simple graph with an example. (v)
 - (vi) Define sub graph and isomorphic graph.
 - (vii) State Euler path and Euler circuit.
 - (viii) Show that every self complementary graph has 4K or 4K + 1 vertices.

https://www.vbspustudy.com

https://www.vbspustudy.com

15/122-BC

- (ix) Define tree and their properties.
- Write the Fulkerson algorithm of network (x) flow.

SECTION - B (Short Answer Type Questions)

Note: Attempt all questions. Give answer of each question in about 200 words. $8 \times 5 = 40$

2. If R is a relation from A to B, S is a relation from B to C and T is a relation from C to D then show. that:

(ROS)
$$OT = RO(SOT)$$
.

OR

The necessary and sufficient condition for a nonempty subset H of a group (G, *) to be a subgroup is $a \in H, b \in H \Rightarrow a * b^{-1} \in H$ where b^{-1} is the inverse of b in G.

https://www.vbspustudy.com

- Show that $(p \lor q) \land (\sim p \land \sim q)$ is a contradiction. Show that ~ r is a valid conclusion from the premises. $p \Rightarrow \sim q, r \Rightarrow p, q$ with truth table.
- 4. Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.

OR

Prove that the sum of degrees of the vertices in an undirected graph is even.

P. T. O.

https://www.vbspustudy.com

https://www.vbspustudy.com

https://www.vbspustudy.com

Give an example of a graph which is Hamiltonian but not non-Eulerian.

OR

Find the shortest path from vertex s to t and its length from the graph given below:

A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?

OR

A simple graph G has a spanning tree if and only if G is connected. https://www.vbspustudy.com

SECTION - C (Long Answer Type Questions)

Note: Attempt any two questions. Give answer of each question in about 500 words. $10 \times 2 = 20$

Set (G,*) and $G_1,*_1$) be two groups and let f: G \rightarrow G₁ be a homomorphism from G to G₁ then:

> P. T. O. (3)

 $f(c) = c_1$ where e is the identity in G and c_1 is the identity in G₁.

https://www.vbspustudy.com

- $f(a^{-1})=(f(a))^{-1}$ for all $a \in G$.
- H is a subgroup of G then (c) $f(H) = \{f(h): h \in H\}$ is a subgroup of G_1 .
- 8. For the set $I_4 = \{0, 1, 3\}$ show that the modulo 4 system is a ring.
- Write short notes on the following:
 - Path and circuits
 - Shortest path problem.
- Write short notes on the following:
 - Hamiltonian graph. (a)
 - Travelling salesman problem. (b)
- A full m-ary tree with i internal vertex has n 11. (a) = mi + 1 vertices.
 - There are atmost mh leaves in an m-ary tree of height h.