B.Sc. (Part-II) Examination-2017

MATHEMATICS First Paper (Linear Algebra and Matrices)

Note: - Attempt questions from all sections as per instructions.

Section-A

(Very Short Answer Type Questions)

Attempt all parts of this question. Give answer of each part in about 50 words. $1^{1/2} \times 10=15$

- (i) Define Vector space.
 - (ii) Test the linear dependence independence of vector's (1, 2, 3), (2, -2, 0).
 - (iii) Define Isomorphism of vector space.
 - (iv) Define Annihilators.
 - (v) Define Rank and Nullity of Linear Transformation.
 - (vi) Define Dual Space.
 - (vii) If A be any matrix, then prove that AA' and A'A are both symmetric matrix.
 - (viii) Find the rank of matrix:

- (ix) State Cayley-Hamilton's theorem.
 - Determine the eigen values of the matrix

$$A = \begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & c & c \end{bmatrix}$$

Section-B (Short Answer Type Questions)

https://www.vbspustudy.com

Attempt all questions. Give answer of each question in about 200 words.

6x5=30

2. Prove that union of two subspaces of a vector space V (F) is a subspace of V (F) iff one is contained in the other.

In a finite dimensional vector space V(F) be the direct sum of its subspace U and W i.e. $V = U \bigoplus W$, then prove that

$$\dim (U \oplus W) = \dim U + \dim W.$$

- 3. If is a mapping of V_3 (F) onto V_2 (F) given by f(x, y, z) = (y, z), then show that f is linear.
 - If T: V W where T is a linear Transformation.

Prove that range and null space of T are subspaces of W and V respectively.

4. If $V_2(R)$ is a vector and $B = \{ (2,1), (3,1) \}$ be a basis of $V_2(R)$, then find the dual basis of B.

If S is any subset of vector space V (F) then Show that S^0 , the annihilator of S is a subspace of V (F).

(5) Find the rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$$

Or

https://www.vbspustudy.com

Show that the equations

$$\frac{5h^{3}W}{2x\cdot y} + 3z = 8$$

$$\frac{x+y}{x+y} \cdot 4z = 0$$

se consistent and solve them.

show that every square matrix is uniquely expressible as the sum of a Hermition matrix and skew Hermitian matrix. Or

Find the eigen values and eigen vectors of the matrix

$$\Lambda = \begin{bmatrix} -2 & -1 \\ 5 & 4 \end{bmatrix}$$

section-C (Long Answer type Questions)

mempt any two questions. Give answer of each question in about 500 words.

If W be a subspace of a finite dimensional vector space V (F) than dim $V/W = \dim V/W$ v-dim W Where V/W is the quotient space

$$V/W = \{ W+\alpha : \alpha \in V \}.$$

If The a linear transformation of n-dimensional vector space V (F), then prove that Rank of T + Nullity of T = n.

If W₁ and W₂ are subspaces of a finite dimensional vector space V (F) then show

https://www.vbspustudy.com

(ii)
$$(W_1 + W_2)^0 = W_1^0 \cap W_1^0$$

Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$

by using E- transformation.

Find the characteristic equation of martix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

and Verify that it is satisfied by A and hence obtain A-1.

https://www.vbspustudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भैजे और 10 रुपये पार्य, Paytm or Google Pay 社

https://www.vbspustudy.com